Full-Day Training | Machine Learning | Beginner-Intermediate
This session is a hands-on introduction to Machine Learning in Python with scikit-learn. You will learn to build and evaluate predictive models on tabular data using the main tools of the Python data-science stack (Jupyter, numpy, pandas, matplotlib and scikit-learn)…more details
Full-Day Training | NLP | Deep Learning | Intermediate-Advanced
Being specialized in domains like computer vision and natural language processing is no longer a luxury but a necessity which is expected of any datascientist in today’s fast-paced world! With a hands-on and interactive approach, we will understand essential concepts in NLP along with extensive hands-on examples to master state-of-the-art tools, techniques and methodologies for actually applying NLP to solve real- world problems. We will leverage machine learning, deep learning and deep transfer learning to learn and solve popular tasks using NLP including NER, Classification, Recommendation \ Information Retrieval, Summarization, Classification, Language Translation, Q&A and Topic Models…more details
Half-Day Training | Quant Finance | Machine Learning | Intermediate
The rapid progress in machine learning (ML) and the massive increase in data availability has enabled novel approaches to quantitative investment and increased the demand for the application of data science to develop discretionary and automated trading strategies.
This workshop covers popular ML use cases for the investment industry. In particular, it focuses on how ML fits into the workflow of developing a trading strategy, from the engineering of financial features to the development of an ML model that generates tradable signals, the backtesting of a trading strategy that acts on these signals and the evaluation of its performance.
We’ll use common Python data science and ML libraries as well as Zipline, Pyfolio, and Alphalens. The code examples will be presented using jupyter notebooks and are based on the second edition of my book ‘Machine Learning for Algorithmic Trading’…more details
Half-Day Training | Big Data | Beginner
This tutorial will introduce you to the wonderful world of Bayesian data science through the lens of probabilistic programming in Python. In the first half of the tutorial, we will introduce the key concepts of probability distributions via hacker statistics, hands-on simulation, and telling stories of the data-generation processes. We will also cover the basics of joint and conditional probability, Bayes’ rule, and Bayesian inference, all through hands-on coding and real-world examples. In the second half of the tutorial, we will use a series of models to build your familiarity with PyMC3, showcasing how to perform the foundational inference tasks of parameter estimation, group comparison (for example, A/B tests and hypothesis testing), and arbitrary curve regression…more details
Workshop | Deep Learning | Intermediate
Learn the basics of building a PyTorch model using a structured, incremental and from first principles approach. Find out why PyTorch is the fastest growing Deep Learning framework and how to make use of its capabilities: autograd, dynamic computation graph, model classes, data loaders and more.
The main goal of this session is to show you how PyTorch works: we will start with a simple and familiar example in Numpy and “torch” it! At the end of it, you should be able to understand PyTorch’s key components and how to assemble them together into a working model.
We will use Google Colab and work our way together into building a complete model in PyTorch. You should be comfortable using Jupyter notebooks, Numpy and, preferably, object oriented programming…more details
Tutorials | Machine Learning | Intermediate
Automated machine learning is the science of building machine learning models in a data-driven, efficient, and objective way. It replaces manual trial-and-error with automated, guided processes. In this tutorial, we will guide you through the current state of the art in hyperparameter optimization, pipeline construction, and neural architecture search. We will discuss model-free blackbox optimization methods, Bayesian optimization, as well as evolutionary and other techniques. We will also pay attention to meta-learning, i.e. learning how to build machine learning models based on prior experience. Moreover, we will give practical guidance on how to do meta-learning with OpenML, an online platform for sharing and reusing machine learning experiments, and how to perform automated pipeline construction with GAMA, a novel, research-oriented AutoML tool in Python…more details
Workshops | Machine Learning | Intermediate
This workshop will feature a comprehensive tutorial on using CatBoost library.
We will walk you through all the steps of building a good predictive model.
We will cover such topics as:
– Working with different types of features, numerical and categorical
– Working with inbalanced datasets
– Using cross-validation
– Understanding feature importances and explaining model predictions
– Tuning parameters of the model
– Speeding up the training..more details
Tutorial | Machine Learning | Intermediate-Advanced
Advances in information extraction have enabled the automatic construction of large knowledge graphs (KGs) like DBpedia, YAGO, Wikidata of Google Knowledge Graph. Learning rules from KGs is a crucial task for KG completion, cleaning and curation. This tutorial presents state-of-the-art rule induction methods, recent advances, research opportunities as well as open challenges along this avenue...more details
Tutorial | Machine Learning | Beginner-Intermediate
Faces are a fundamental piece of photography, and building applications around them has never been easier with open-source libraries and pre-trained models. In this tutorial, we’ll help you understand some of the computer vision and machine learning techniques behind these applications. Then, we’ll use this knowledge to develop our own prototypes to tackle tasks such as face detection (e.g. digital cameras), recognition (e.g. Facebook Photos), classification (e.g. identifying emotions), manipulation (e.g. Snapchat filters), and more…more details
Workshop | Machine Learning | Responsible AI | Beginner
In the days where we have autonomous cars, drones, and automated medical diagnostics, we want to learn more about how to interpret the decisions made by the machine learning models. Having such information we are able to debug the models and retrain it in the most efficient way.
This talk is dedicated to managers, developers and data scientists that want to learn how to interpret the decisions made by machine learning models. We explain the difference between white and black box models, the taxonomy of explainable models and approaches to XAI. Knowing XAI methods is especially useful in any regulated company.
We go through the basic methods like the regression methods, decision trees, ensemble methods, and end with more complex methods based on neural networks. In each example, we use a different data set for each example. Finally, we show how to use model agnostic methods to interpret it and the complexity of the interpretability of many neural networks…more details
Workshop | Machine Learning | Beginner
General Data Protection Regulation (GDPR) is now in place. Are you ready to explain your models? This is a hands-on tutorial for beginners. I will demonstrate the use of open-source H2O platform (https://www.h2o.ai/products/h2o/) with both Python and R for automatic and explainable machine learning. Participants will be able to follow and build regression and classification models quickly with H2O AutoML. They will then be able to explain the model outcomes with various methods...more details
Workshop | Responsible Ai | Machine Learning | Intermediate-Advanced
Recently, academics as well as policy makers have written many papers, on responsible data science / AI. Moreover, many open-source packages for bias dashboards or tools for `fairness’ have been proposed. This session aims to provide attendees a broad overview as well as the specific technical background to use the available ` fairness’ tools. In addition, a governance framework describing the precise responsibilities of data scientists will be discussed…more details
Workshop | Deep Learning | NLP | All Levels
Over the past few years speech synthesis or text-to-speech (TTS) has seen rapid advances thanks to deep learning. As anyone who owns a voice assistant will know, artificial voices are becoming more and more natural and convincing. The good news is you can recreate this impressive technology yourself, using high quality open-source tools.
In this workshop, we’ll learn all about TTS and create a custom speech synthesis system from scratch. We’ll take a look at the development of TTS systems up to the present day, investigate the challenges that researchers are still grappling with, and walk through and end-to-end example of creating a deep learning-based TTS system – including data preparation, training, inference and evaluation. This workshop doesn’t require any prior knowledge of TTS or deep learning…more details
Talk | Deep Learning | All Levels
This talk reviews a set of relevant deep learning model architectures including autoencoders, variational auto-encoders, generative adversarial networks and sequence-to-sequence methods, and addresses how they can be applied to the task of anomaly detection, comparing them in terms of training, inference and storage costs. Anomaly detection using each of these models is explored as a function of how they can be applied to first model normal behavior, and then this knowledge is exploited to identify deviations. In addition, we provide practical guidance for the successful implementation of anomaly detection systems within enterprises across key metrics like interpretability, reduction of false positives and scalability…more details
Talk | Deep Learning | Machine Learning | Intermediate-Advanced
As the world rapidly changing around us, business across industries are treading carefully with unprecedented challenges and, if lucky enough, new opportunities. Due to their statistical assumption of generalizable patterns from the past, machine learning models are facing more scepticism about their validity in the world we now live in. It is more crucial than ever for data scientists to keep close eye on our beloved models in production, understand the impact of business changes on them, and steer promptly from potential pitfalls. In this session, I will share some experience of model monitoring and diagnosis from a leading UK fintech company…more details
Talk