Building Content Embedding with Self Supervised Learning

Abstract: 

Twitter is what's happening in the world right now. In order to understand and organize content on the platform, we leverage a semantic text representation that is useful across a variety of tasks. Because content on Twitter spans a wide range of diverse topics and is constantly changing, supervised training that traditionally relies on human-annotated corpora proves to be expensive and unscalable.
Sijun He and Kenny Leung share their experience building and serving self-supervised content representations for heterogeneous content on Twitter. They also highlight various applications of content embeddings in recommendation systems, as well as the engineering challenge of maintaining such embeddings at scale.

Bio: 

Sijun He is a machine learning engineer at Twitter Cortex, where he works on content understanding with deep learning and NLP. Previously, he was a data scientist at Autodesk. Sijun holds an MS in statistics from Stanford University.

Open Data Science

Open Data Science
Innovation Center
101 Main St
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google