Deep Defense: Using Deep Learning to Fight Off Uber Fraudsters
Deep Defense: Using Deep Learning to Fight Off Uber Fraudsters


Fraud models are generally based on narrow data streams processed by traditional machine learning models such as gradient boosted machines. Our talk will cover how Uber improved on this by applying deep learning to extract complex feature relationships from high-dimensional datasets such as tapstream and location data. We will cover the lessons we learned while applying deep learning to three fraud use cases:
Finding anomalous trip locations based on all Uber trip history
Using tap streams to model normal vs fraud app usage
Computer vision for validating credit cards and IDs"


Karthik Ramasamy leads a data science team at Uber focusing on solving fraud problems using machine learning. His team builds advanced machine learning models like semi-supervised and deep learning models to detect frauds like account takeovers and stolen credit cards. Before Uber, Karthik was a co-founder of his company, LogBase where he worked on real-time analytics infrastructure and building models to rate drivers based on their driving behavior. Prior to founding LogBase, he was a founding member of the LinkedIn security team where he developed various security products, with a particular focus on anti-automation efforts.

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google