Deploying Deep Learning models as Microservices
Deploying Deep Learning models as Microservices


Powering your application with deep learning is no walk in the park, but is certainly attainable with some tricks and good practice. Serving a deep learning model on a production system demands the model to be stable, reproducible, capable of isolation and behave as a stand-alone package. One possible solution to this is a containerized microservice. 

Ideally, serving deep learning microservices should be quick and efficient, without having to dive deep into the underlying algorithms and their implementation. Too good to be true? Not anymore! Together, we will demystify the process of developing, training, and deploying deep learning models as a web microservice.

We will kick off with an overview of how deep learning models are best published as Docker images on DockerHub, and are best prepared for deployment in local or cloud environments using Kubernetes or Docker.
We highlight the following benefits of such an approach:
- Standardized REST API implementation and application-friendly output format (JSON) 
- Abstracting out the complex pre and post processing portions of the model inputs and outputs.

We then demonstrate these concepts with Model Asset Exchange, an open source framework. All these applications and the framework itself are open source and we conclude by inviting contributions and opening the gates for you to be a part of this amazing initiative!


Saishruthi Swaminathan is a developer advocate and data scientist in the IBM CODAIT team, whose main focus is to democratize data and AI through open source technologies. Her passion is to dive deep into the ocean of data, extract insights, and use AI for social good. Previously, she worked as a software developer. On a mission to spread the knowledge and experience, she acquired in her learning process. She also leads education for rural children initiative and organizing meetups focusing on women empowerment. She has a masters in electrical engineering, specializing in data science and a bachelor's degree in electronics and instrumentation. She can be found on "LinkedIn": and "Medium":

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google