Explainability by Design: a Methodology to Support Explanations in Decision-making Systems

Abstract: 

As automated decision-making solutions are increasingly applied to all aspects of everyday life, capabilities to generate meaningful explanations for a variety of stakeholders (i.e., decision-makers, recipients of decisions, auditors, regulators...) become crucial.

Explainability by design is a new methodology characterised by proactive measures to include explanations in the design rather than reactive measures attempting to retrofit explanations capability as an afterthought.

In this talk, I will describe the steps involved in the Explainability by design methodology, and I will explain how the methodology can be applied to an illustrative autonomous system, which makes financial decisions about customers. I will also discuss the methodology qualitatively and quantitatively.

Bio: 

Luc Moreau is a Professor of Computer Science and Head of the department of Informatics, at King's College London. Before joining King's, Luc was Head of the Web and Internet Science, in the department of Electronics and Computer Science, at the University of Southampton.

Luc was co-chair of the W3C Provenance Working Group, which resulted in four W3C Recommendations and nine W3C Notes, specifying PROV, a conceptual data model for provenance the Web, and its serializations in various Web languages. Previously, he initiated the successful Provenance Challenge series, which saw the involvement of over 20 institutions investigating provenance inter-operability in 3 successive challenges, and which resulted in the specification of the community Open Provenance Model (OPM). Before that, he led the development of provenance technology in the FP6 Provenance project and the Provenance Aware Service Oriented Architecture (PASOA) project.

He is on the editorial board of "PeerJ Computer Science" and previously he was editor-in-chief of the journal "Concurrency and Computation: Practice and Experience" and on the editorial board of "ACM Transactions on Internet Technology".

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google