Exploring the Interconnected World: Network/Graph Analysis in Python

Abstract: 

Networks, also known as graphs are one of the most crucial data structures in our increasingly intertwined world. Social friendship networks, the world-wide-web, financial systems, infrastructure (power grid, streets), etc. are all network structures. Knowing how to analyze the underlying network topology of interconnected systems can provide an invaluable skill in anyone's toolbox. This tutorial will provide a hands-on guide on how to approach a network analysis project from scratch and end-to-end: how to generate, manipulate, analyze and visualize graph structures that will help you gain insight about relationships between elements in your data.

Session Outline
Lesson 1: Generate & manipulate graph structures. Learn how to generate basic network types, and the most often encountered network models in real data. Next, discover the most informative network measures to understand network structures and behaviors.

Lesson 2: Analyze and visualize networks. Extract information about real public social network data by building, analyzing and visualizing it to gain understanding about its structure and behaviors.

Session Background
Basic Python

Bio: 

Noemi Derzsy is a Senior Inventive Scientist at AT&T Chief Data Office within the Data Science and AI Research organization. Her research is centered on understanding and modeling customer behavior and experience through large-scale consumer and network data, using machine learning, network analysis/modeling, spatio-temporal mining, text mining and natural language processing techniques. She is an organizer of Data Umbrella meetup group and NYC Women in Machine Learning and Data Science meetup group, and she is a NASA Datanaut.
Prior to joining AT&T, Noemi was a Data Science Fellow at Insight Data Science NYC and a postdoctoral research associate at Social Cognitive Networks Academic Research Center at Rensselaer Polytechnic Institute. She holds a PhD in Physics, MS in Computational Physics, and has a research background in Network Science and Computer Science.