MLOps v LMOps – What’s Different?


Deploying advanced Machine Learning technology to serve customers and/or business needs requires a rigorous approach and production-ready systems, which has led to the development of MLOps. Large models make rigorous engineering and scalable architectures even more important, which in turn has led to the emergence of LMOps. Just the size of the models themselves, and the datasets used for training, require highly efficient infrastructure. More complex pipeline topologies which include transfer learning, fine tuning, instruction tuning, and evaluation along a collection of complex dimensions, require a high degree of flexibility for customization. Add to this the complex inference-time systems and requirements, and LMOps starts to look somewhat challenging to implement.

Rigorous analysis of model performance at a deep level, including edge and corner cases is a key requirement of mission-critical applications. Measuring and understanding model sensitivity is also part of any rigorous model development process.

We discuss the use of ML pipeline architectures for implementing production ML applications, including large model architectures, and in particular we review Google’s experience with TFX, and available tooling for rigorous analysis of model performance and sensitivity. Google uses TFX for large scale ML applications, and offers an open-source version to the ML community, which is actively extending TFX to add new features and components.

Session Outline:

"* An overall understanding of MLOps
* An overall understanding of LMOps
* The difference between the two


A data scientist and ML enthusiast, Robert has a passion for helping developers quickly learn what they need to be productive. Robert is currently the Senior Product Manager for TensorFlow Open-Source and MLOps at Google and helps ML teams meet the challenges of creating products and services with ML. Previously Robert led software engineering teams for both large and small companies, always focusing on moving fast to implement clean, elegant solutions to well-defined needs. You can find him on LinkedIn at robert-crowe.

Open Data Science




Open Data Science
One Broadway
Cambridge, MA 02142

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google