Neutralizing Subjectivity Bias with HuggingFace Transformers

Abstract: 

The NLP task of text style transfer (TST) aims to automatically control the style attributes of a piece of text while preserving the content, which is an important consideration for making NLP more user-centric. In this session, we will explore text style transfer through an applied use case — neutralizing subjectivity bias in free text. Along the way, we’ll describe our sequence-to-sequence modeling approach leveraging HuggingFace Transformers, and present a set of custom, reference-free evaluation metrics for quantifying model performance. Finally, we’ll conclude with a discussion of ethics centered around our Applied Machine Learning Prototype: Exploring Intelligent Writing Assistance.

Bio: 

Andrew is a Research Engineer at Cloudera Fast Forward Labs where he spends his time researching the latest advances in the field of machine learning and building prototypes applied to real-world use cases. Prior to joining Cloudera, Andrew worked as a Data Scientist in Deloitte’s Analytics & Cognitive practice developing data products and delivering insights for Government and Public Sector organizations. Andrew holds a Bachelor’s Degree in Mechanical Engineering from Virginia Tech.

Open Data Science

 

 

 

Open Data Science
One Broadway
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google