Just Machine Learning
Just Machine Learning


In 1997, Tom Mitchell defined the well-posed learning problem as follows: “A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.” In this talk, I will discuss current tasks, experiences, and performance measures as they pertain to fairness in machine learning. The most popular task thus far has been risk assessment. We know this task comes with impossibility results (e.g., see Kleinberg et al. 2016, Chouldechova 2016). I will highlight new findings in terms of these impossibility results. In addition, most human decision-makers seem to use risk estimates for efficiency purposes and not to make fairer decisions. I will present an alternative task definition whose goal is to provide more context to the human decision-maker. The problems surrounding experience have received the most attention. Joy Buolamwini (MIT Media Lab) refers to these as the “under-sampled majority” problem. The majority of the population is non-white, non-male; however, white males are overrepresented in the training data. Not being properly represented in the training data comes at a cost to the under-sampled majority when machine learning algorithms are used to aid human decision-makers. In terms of performance measures, a variety of definitions exist from group- to individual- to procedural-fairness. I will discuss our null model for fairness and demonstrate how to use deviations from this null model to measure favoritism and prejudice in the data.


Tina Eliassi-Rad is a Professor of Computer Science at Northeastern University. She is also a core faculty member at Northeastern University's Network Science Institute. Prior to joining Northeastern, Tina was an Associate Professor of Computer Science at Rutgers University; and before that she was a Member of Technical Staff and Principal Investigator at Lawrence Livermore National Laboratory. Tina earned her Ph.D. in Computer Sciences at the University of Wisconsin-Madison. Her research is rooted in data mining and machine learning; and spans theory, algorithms, and applications of big data from networked representations of physical and social phenomena. She has over 100 peer-reviewed publications (including a few best paper and best paper runner-up awardees). Tina's work has been applied to personalized search on the World-Wide Web, statistical indices of large-scale scientific simulation data, fraud detection, mobile ad targeting, cyber situational awareness, and ethics in machine learning. Her algorithms have been incorporated into systems used by the government and industry (e.g., IBM System G Graph Analytics) as well as open-source software (e.g., Stanford Network Analysis Project). In 2017, Tina served as the program co-chair for the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining  and as the program co-chair for the International Conference on Network Science . In 2020, she is serving as the program co-chair for the International Conference on Computational Social Science. Tina received an Outstanding Mentor Award from the Office of Science at the US Department of Energy in 2010; and became a Fellow of the ISI Foundation in Turin Italy in 2019. 

Open Data Science




Open Data Science
One Broadway
Cambridge, MA 02142

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from Youtube
Consent to display content from Vimeo
Google Maps
Consent to display content from Google