Rule Induction and Reasoning in Knowledge Graphs


Advances in information extraction have enabled the automatic construction of large knowledge graphs (KGs) like DBpedia, YAGO, Wikidata of Google Knowledge Graph. Learning rules from KGs is a crucial task for KG completion, cleaning and curation. This tutorial presents state-of-the-art rule induction methods, recent advances, research opportunities as well as open challenges along this avenue.


Daria Stepanova is a research scientist at Bosch Center for Artificial Intelligence. Her research interests include Knowledge Representation and Reasoning with a special focus on the automatic acquisition of rules from structured knowledge. Previously Daria was a senior researcher at Max Plank Institute for Informatics (Germany), where she was heading a group on Semantic Data. Daria got her diploma degree in Applied Computer Science from the Department of Mathematics and Mechanics of St. Petersburg State University (Russia) in 2010 and a PhD in Computational Logic from Vienna University of Technology (Austria) in 2015. Before starting her PhD she worked as a visiting researcher at the School of Computing Science at Newcastle University (UK) in an industrially-oriented project.

Open Data Science




Open Data Science
One Broadway
Cambridge, MA 02142

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Consent to display content from - Youtube
Consent to display content from - Vimeo
Google Maps
Consent to display content from - Google