The Hamiltonian Monte Carlo Revolution is Open Source: Probabilistic Programming with PyMC3
The Hamiltonian Monte Carlo Revolution is Open Source: Probabilistic Programming with PyMC3

Abstract: 

In the last ten years, there have been a number of advancements in the study of Hamiltonian Monte Carlo algorithms that have enabled effective Bayesian statistical computation for much more complicated models than were previously feasible. These algorithmic advancements have been accompanied by a number of open source probabilistic programming packages that make them accessible to programmers and statisticians. PyMC3 is one such package written in Python and supported by NumFOCUS. This talk will give an introduction to probabilistic programming with PyMC3. No preexisting knowledge of Bayesian statistics is necessary; a working knowledge of Python will be helpful.

Bio: 

Austin Rochford is the Chief Data Scientist at Monetate. He is a recovering mathematician and is passionate about math education, Bayesian statistics, and machine learning. His writing is available online at austinrochford.com.

Open Data Science

Open Data Science
Innovation Center
101 Main St
Cambridge, MA 02142
info@odsc.com

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google