ODSC Webinar Calendar

ODSC’s free webinar series serves to educate our community on the languages, tools, and topics of AI and Data Science

ODSC India 2019 Warm-Up: Machine Learning & Deep Learning

June 30th, 2019
11 am – 12:30 pm IST
Click here to register

Add to Calendar
06/30/2019 10:00 PM
ODSC India 2019 Warm-Up

Click here for Webinar Access
ODSC Webinar

Usha Rengaraju
Principal Data Scientist at Mysuru Consulting Group

Deep learning powered Genomic Research

The event disease happens when there is a slip in the finely orchestrated dance between physiology, environment and genes. Treatment with chemicals (natural, synthetic or combination) solved some diseases but others persisted and got propagated along the generations. Molecular basis of disease became prime center of studies to understand and to analyze root cause. Cancer also showed a way that origin of disease, detection, prognosis and treatment along with cure was not so uncomplicated process. Treatment of diseases had to be done case by case basis (no one size fits).
With the advent of next generation sequencing, high through put analysis, enhanced computing power and new aspirations with neural network to address this conundrum of complicated genetic elements (structure and function of various genes in our systems). This requires the genomic material extraction, their sequencing (automated system) and analysis to map the strings of As, Ts, Gs, and Cs which yields genomic dataset. These datasets are too large for traditional and applied statistical techniques. Consequently, the important signals are often incredibly small along with blaring technical noise. This further requires far more sophisticated analysis techniques. Artificial intelligence and deep learning gives us the power to draw clinically useful information from the genetic datasets obtained by sequencing.

Presenter bio

I am a polymath and unicorn data scientist with strong foundations in Economics, Finance, Business Foundations, Business Analytics and Psychology. I specialize in Probabilistic Graphical Models, Machine Learning and Deep Learning. I have completed Financial Engineering and Risk Management program from Columbia University with top honors, micromasters in Marketing Analytics from UC Berkeley and statistical analysis in Life Sciences specialization from Harvard. I am chapter lead/Co-Organizer of Women in Machine Learning and Data Science Bengaluru Chapter and Core oganizing team member at WIDS Bengaluru .I have around 6 years of technical experience working in various companies like Infosys, Temenos, NeoEYED and Mysuru Consulting Group. I am part of dedicated group of experts and enthusiasts who explore Coursera courses before they open to the public, an ambassador at AIMed (an initiative which brings together physicians and AI experts), part time Data science instructor, mentor at GLAD (gladmentorship.com), mentor at JobsForHer and volunteer at Statistics without Borders. I developed the course curriculum for Probabilistic Graphical Models @ Upgrad which is taught by Professor Srinivasa Raghavan from IIIT Bangalore.

Dipanjan Sarkar
Principal Data Scientist at Red Hat

Anuj Gupta
cientist at Intuit

A Hands-on Introduction to Natural Language Processing

Being specialized in domains like computer vision and natural language processing is no longer a luxury but a necessity which is expected of any data scientist in today’s fast-paced world! With a hands-on and interactive approach, we will understand essential concepts in NLP along with extensive case- studies and hands-on examples to master state-of-the-art tools, techniques and frameworks for actually applying NLP to solve real- world problems. We leverage Python 3 and the latest and best state-of- the-art frameworks including NLTK, Gensim, SpaCy, Scikit-Learn, TextBlob, Keras and TensorFlow to showcase our examples. You will be able to learn a fair bit of machine learning as well as deep learning in the context of NLP during this bootcamp.

The intent of this workshop is to make you a hero in NLP so that you can start applying NLP to solve real-world problems. We start from zero and follow a comprehensive and structured approach to make you learn all the essentials in NLP. We will be covering the following aspects during the course of this workshop with hands-on examples and projects!

Dipanjan Sarkar

Dipanjan (DJ) Sarkar is a Data Scientist at Red Hat, a published author, and a consultant and trainer. He has consulted and worked with several startups as well as Fortune 500 companies like Intel. He primarily works on leveraging data science, advanced analytics, machine learning and deep learning to build large- scale intelligent systems. He holds a master of technology degree with specializations in Data Science and Software Engineering. He is also an avid supporter of self-learning and massive open online courses. He has recently ventured into the world of open-source products to improve the productivity of developers across the world.
Dipanjan has been an analytics practitioner for several years now, specializing in machine learning, natural language processing, statistical methods and deep learning. Having a passion for data science and education, he also acts as an AI Consultant and Mentor at various organizations like Springboard, where he helps people build their skills on areas like Data Science and Machine Learning. He also acts as a key contributor and Editor for Towards Data Science, a leading online journal focusing on Artificial Intelligence and Data Science. Dipanjan has also authored several books on R, Python, Machine Learning, Social Media Analytics, Natural Language Processing, and Deep Learning.
Dipanjan’s interests include learning about new technology, financial markets, disruptive start-ups, data science, artificial intelligence and deep learning. In his spare time he loves reading, gaming, watching popular sitcoms and football and writing interesting articles on https://medium.com/@dipanzan.sarkar and https://www.linkedin.com/in/dipanzan. He is also a strong supporter of open-source and publishes his code and analyses from his books and articles on GitHub at https://github.com/dipanjanS.

Anuj Gupta

I am part of Intuit AI team. Prior to this, I was heading ML efforts for Huawei Technologies, Freshworks, Chennai and Airwoot, Delhi. I did my masters in theoretical computer science from IIIT Hyderabad and I dropped out of my Phd from IIT Delhi to work with startups. 

I am a regular speaker at ML conferences like Pydata, Nvidia forums, Fifth Elephant, Anthill. I have also conducted a bunch of workshop attended by machine learning practitioners. I am also the co-organizer for one of the early Deep Learning meetups in Bangalore.  I am also Editor of “Anthill-2018” – deep learning focused conference by HasGeek.

More speakers will be announced soon!

Kubeflow, MLFlow and beyond - augmenting ML delivery

July 16th, 2019
1 pm – 2 pm EST
Click here to register

Add to Calendar
07/16/2019 10:00 AM
Kubeflow, MLFlow and beyond – augmenting ML delivery

Click here for Webinar Access
ODSC Webinar

Stepan Pushkarev
CTO in Provectus

Kubeflow, MLFlow and beyond - augmenting ML delivery

Reproducible ML pipelines in research and production with monitoring insights from live inference clusters could enable and accelerate the delivery of AI solutions for enterprises. There is a growing ecosystem of tools that augment researchers and machine learning engineers in their day to day operations. Still, there are big gaps in the machine learning workflow when it comes to training dataset versioning, training performance and metadata tracking, integration testing, inferencing quality monitoring, bias detection, concept drift detection and other aspects that prevent the adoption of AI in organizations of all sizes.

In this webinar, we’ll design a reference machine learning workflow. We’ll review open source tools that contribute to this workflow and are applicable to build reproducible automation of it.


– A deeper view on traps and pitfalls on each stage of ML lifecycle.

– Reference implementation and automation of ML Workflow.

Prerequisite knowledge:

– Understanding of core Data Science methods, frameworks and libraries.

– An image of what Docker and Kubernetes are.

Presenter bio

Stepan Pushkarev is a CTO of Provectus. His background is in the engineering of data platforms. He spent the last couple of years building continuous delivery and monitoring tools for machine learning applications as well as designing streaming data platforms. He works closely with data scientists to make them productive and successful in their daily operations.

Previous Webinars

Check out our previous AI talks at learnai.odsc.com below

Model-based Reinforcement Learning for Atari

Free recording will be available here

Błażej Osiński
Senior Data Scientist at deepsense.ai

Model-based Reinforcement Learning for Atari

Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction – substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes.

In this webinar we will explore:

  • How video prediction models can be used to improve the sample efficiency of reinforcement learning?

  • How to create a model capable of predicting future in Atari games?

  • How to train the RL agent within “dreams” of another neural network?

Presenter bio

Błażej Osiński is a researcher at deepsense.ai working on reinforcement learning. His professional experience includes working at Google, Google Brain, Microsoft and Facebook. He was also the first software engineer at Berlin-based startup Segment of 1. Błażej holds a Masters Degree in Computer Science and Bachelors in Mathematics, both from the University of Warsaw.

OmniSci and RAPIDS: An End-to-End Open-Source Data Science Workflow

Free recording will be available here

Randy Zwitch
Senior Developer Advocate at OmniSci

OmniSci and RAPIDS: An End-to-End Open-Source Data Science Workflow

In this session, attendees will learn how the OmniSci GPU-accelerated SQL engine fits into the overall RAPIDS partner ecosystem for open-source GPU analytics. Using open bike-share data, users will learn how to ingest streaming data from Apache Kafka into OmniSci, perform descriptive statistics and feature engineering using both SQL and cuDF with Python and return the results as a GPU DataFrame. By the end of the session, attendees should feel comfortable that an entire data science workflow can be accomplished using tools from the RAPIDS eco-system, all without the data ever leaving the GPU.

Topics to be highlighted:
– What is RAPIDS? (discussion of NVIDIA open-source RAPIDS project, how it relates to Apache Arrow, etc.)
– What is OmniSci and how does it fit into the RAPIDS eco-system
– Example:
– Ingesting a data stream from Apache Kafka into OmniSci
– Using pymapd (Python) to query data from OmniSci and do basic visualizations
– Use cudf to do data cleaning and feature engineering
– Show how cudf dataframes can be passed to machine learning libraries like Tensorflow, PyTorch or xgboost.

Presenter bio

Randy Zwitch is a Senior Developer Advocate at OmniSci, enabling customers and community users alike to utilize OmniSci to its fullest potential. With broad industry experience in Energy, Digital Analytics, Banking, Telecommunications and Media, Randy brings a wealth of knowledge across verticals as well as an in-depth knowledge of open-source tools for analytics.

Quantum Machine Learning: The future scope of AI

Click here to access free recording

Dr. Santosh Kumar Nanda
Asst. General Manager (Lead Data Scientist) in Analytics Center of Excellence, (R & D), FLYTXT Mobile Solution Pvt. Ltd., Trivandrum, India

Quantum Machine Learning: The future scope of AI

Over the past half-century, the rapid progression in computing devices, availability of high-performance computing devices helps a researcher to do more research with high volume data. Recently IBM successfully developed quantum processor-based computing devices which very faster than the current computing devices. In general, quantum computing based computing devices integrated with a quantum bit which is faster than a binary bit. Therefore, quantum computing based computer can able to read and process high volume data in a very faster way to compare with conventional 64-bit computing devices. In a similar way, the available classical machine learning algorithms based on binary bit operation has slow performance in high volume data. It is also predicted after commercialization of quantum processor based computer, it will help many industries with maximum benefit and the field of quantum machine learning will widely open to new innovation for solving of future complex problems. This presentation representing the quantum machine learning concepts, architectures and model development with quantum bit operations.

Presenter bio

Dr. Santosh Kumar Nanda is working as Asst. General Manager (Lead Data Scientist) in Analytics Center of Excellence, (R & D), FLYTXT Mobile Solution Pvt. Ltd., Trivandrum, India.  He completed his Ph.D. from National Institute of Technology, Rourkela. His research interests are Computational Intelligence, Artificial Intelligence, Machine Learning, Statistics and Data Science, Mathematical modeling, Pattern Recognition. He has more than 60 research articles in reputed International Journals and International conferences etc. He is now Editor-in-Chief of Journal of Artificial Intelligence, Associate Editor in International Journal of Intelligent System and Application. He is a member of World Federation Soft Computing, USA.

ODSC East 2019 Warm-Up: DataOps

Click here to access free recording

Haftan Eckholdt, Ph.D.
Chief Data Science & Chief Science Officer, Understood.org

Making Data Science: AIG, Amazon, Albertsons

Developing an internal data science capability requires a cultural shift, a strategic mapping process that aligns with existing business objectives, a technical infrastructure that can host new processes, and an organizational structure that can alter business practice to create a measurable impact on business functions. This workshop will take you through ways to consider the vast opportunities for data science to identify and prioritize what will add the most value to your organization, and then budget and hire into commitments. Learn the most effective ways to establish data science objectives from a business perspective including recruiting, retention, goal setting, and improving business.

Presenter bio

Haftan Eckholdt, PhD. is Chief Data Science Office at Understood.org. His career began with research professorships in Neuroscience, Neurology, and Psychiatry followed by industrial research appointments at companies like Amazon and AIG. He holds graduate degrees in Biostatistics and Developmental Psychology from Columbia and Cornell Universities. In his spare time, he thinks about things like chess and cooking and cross country skiing and jogging and reading. When things get really really busy, he actually plays chess and cooks delicious meals and jogs a lot. Born and raised in Baltimore, Haftan has been a resident of Kings County, New York since the late 1900s.

Christopher P. Berg

CEO, Head Chef, DataKitchen

The DataOps Manifesto

The list of failed big data projects is long. They leave end-users, data analysts and data scientists frustrated with long lead times for changes. This presentation will illustrate how to make changes to big data, models, and visualizations quickly, with high quality, using the tools analytic teams love. We synthesize DevOps, Demming, and direct experience into the DataOps Manifesto.
To paraphrase an old saying: “It takes a village to get insights from data.” Data analysts, data scientists, and data engineers are already working in teams delivering insight and analysis, but how do you get the team to support experimentation and insight delivery without ending up failing? Christopher Bergh presents the seven shocking steps to get these groups of people working together. These seven steps contain practical, doable steps that can help you achieve data agility.
After looking at trends in analytics and a brief review of Agile, Christopher outlines the steps to apply DevOps techniques from software development to create an Agile analytics operations environment, including how to add tests, modularize and containerize, do branching and merging, use multiple environments, parameterize your process, use simple storage, and use multiple workflows deploy to production with W. Edwards Deming efficiency. They also explain why “don’t be a hero” should be the motto of analytic teams—emphasizing that while being a hero can feel good, it is not the path to success for individuals in analytic teams.
Christopher’s goal is to teach analytic teams how to deliver business value quickly and with high quality. They illustrate how to apply Agile processes to your department. However, a process is not enough. Walking through the seven shocking steps will demonstrate how to create a technical environment that truly enables speed and quality by supporting DataOps.

Presenter bio

Christopher Bergh is a Founder and Head Chef at DataKitchen.
Chris has more than 20 years of research, engineering, analytics, and executive management experience. Previously, Chris was Regional Vice President in the Revenue Management Intelligence group in Model N. Before Model N, Chris was COO of LeapFrogRx and analytics software and service provider. Chris led the acquisition of LeapFrogRx by Model N in January 2012. Prior to LeapFrogRx Chris was CTO and VP of Product Management of MarketSoft (now part of IBM) an Enterprise Marketing Management software vendor. Prior to that, Chris developed Microsoft Passport, the predecessor to Windows Live ID, a distributed authentication system used by 100s of Millions of users today. He was awarded a US Patent for his work on that project. Before joining Microsoft, he led the technical architecture and implementation of Firefly Passport, an early leader in Internet Personalization and Privacy. Microsoft subsequently acquired Firefly. Chris led the development of the first travel-related e-commerce web site at NetMarket. Chris began his career at the Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory and NASA Ames Research Center. There he created software and algorithms that provided aircraft arrival optimization assistance to Air Traffic Controllers at several major airports in the United States. Chris served as a Peace Corps Volunteer Math Teacher in Botswana, Africa. Chris has an M.S. from Columbia University and a B.S. from the University of Wisconsin-Madison. He is an avid cyclist, hiker, reader, and father of two teenagers.

Ethical Large-Scale Artificial Intelligence within Sports

Free recording will be available here

Aaron Baughman
AI Architect, Master Inventor, IBM

Ethical Large-Scale Artificial Intelligence within Sports

Unintended bias and unethical Artificial Intelligence (AI) technologies can be detected by fairness metrics and corrected with mitigation techniques. Fair computational intelligence is important because AI is augmenting human tasks and decisions within every facet of life. As a core component of society, sports and entertainment are becoming driven with machine learning algorithms. For example, over 10 million ESPN fantasy football players use Watson insights to pick their roster week over week. A fair post processor ensures NFL players, irrespective of the team assignment, are projected for an impartial boom in play so that owners avoid basing their team roster decisions on biased insights. This is critically important because users spent over 7.7 billion minutes on the ESPN Fantasy Football platform during the 2018 season. In another example, automated video highlight generation at golf tournaments should be contextually fair. Golf player biographical data, game play context and weather information should not skew deep learning excitement measurements. An overall player video highlight excitement score that includes gesture, crowd noise, commentator tone, spoken words, facial expressions, body movement and 40 situational features is continually debiased. The resulting highlights are pulled into personalized highlight reels and stored on a web accelerator tier. Throughout the talk, I will show examples of using an open source library called IBM AI Fairness 360 and the IBM OpenScale cloud service to provide highly veracious insights.

Presenter bio

Aaron K. Baughman is a Principal AI Architect and 3x Master Inventor within IBM Interactive Experience focused on Artificial Intelligence for sports and entertainment. He has worked with ESPN Fantasy Football, NFL’s Atlanta Falcons, The Masters, USGA, Grammy Awards, Tony Awards, Wimbledon, USTA, US Open, Roland Garros and the Australian Open.He led and designed the ESPN Fantasy Football with Watson that has over 2 billion hits per day. Aaron worked on Predictive Cloud Computing for sports that have been published in IEEE and INFORMS. He was a Technical Lead on a DeepQA (Jeopardy!) project and an original member of the IBM Research DeepQA embed team. Early in his career, he worked on biometrics (face, iris, and fingerprint), software engineering and search projects for US classified government agencies. He has published numerous scientific papers and a Springer book.    Aaron holds a B.S. in Computer Science from Georgia Tech, an M.S. in Computer Science from Johns Hopkins, 2 certificates from the Walt Disney Institute and a Deep Learning certificate from Coursera. Aaron is a 3-time IBM Master Inventor, IBM Academy of Technology member, Corporate Service Corps alumni, a lifelong INFORMS Franz Edelman laureate, global Awards.ai winner and a AAAS-Lemelson Invention Ambassador. He has 101 granted patents with over 150 pending.

ODSC East Ignite Accelerate AI Webinar Warmup

Click here to access free recording

Hillary Green-Lerman
Senior Curriculum Lead, DataCamp

Building an Analytics Team

Based on her experience of building analytics teams from the ground up, Hillary will walk through the process of creating an analytics team.
We’ll begin by examining why analytics teams exist and how they are different from Data Science teams. Next, we’ll discuss possible structures for the analytics team, including embedded, independent, and hybrid structures.
We’ll talk about best practices in hiring a diverse and talented analytics team, including good interview questions, and interview tools, such as CoderPad to ensure that applicants have the necessary skill set.
Once the team is up and running, it needs to integrate with Product teams. Creating best practices around data creation and experimental design can make sure that your team is involved early before problems can surface.
Success can bring challenges, such as too many under-defined requests. Creating a ticketing system unique to your team can ensure that ad hoc requests can be handled in a systematic and efficient manner. This is key to scaling an analytics team.
There are many approaches to becoming the voice of data at a company. Building a data reporting ecosystem ensure that all internal clients have access to what they need when they need it. The talk will cover dashboarding, alert systems, and data newsletters. Finally, we’ll discuss promoting responsible data conception through continuous training in statistics and tooling for all members of an organization.

Presenter bio

Hillary is a Senior Curriculum Lead at DataCamp. She is an expert in creating a data-driven product and curriculum development culture, having built the Product Intelligence team at Knewton and the Data Science team at Codecademy. She enjoys explaining data science in a way that is understandable to people with both PhDs in Math and BAs in English.

Conor Jensen
Customer Success Team Lead, Dataiku

Building and Managing World-Class Data Science Teams (Easier Said Than Done)

Despite the promise and opportunities of data science, many organizations are failing to see a return on their investment. The key issue holding organizations back is a lack of good data science management. This manifests in failure to effectively build and manage teams. In this workshop, we will go through a methodological approach for helping managers identify the needs of their organization and build the appropriate team. We will learn how to:
1 – put in place the appropriate foundational elements
2- select and recruit the right team
3 – develop and manage that team to success
4- create pipelines of good data science managers and technical rock stars

Presenter bio

Conor Jensen is an experienced Data Science executive with over 15 years working in the analytics space across multiple industries as both a consumer and developer of analytics solutions. He is the founder of Renegade Science, a Data Science strategy and coaching consultancy and works as a Customer Success Team Lead at Dataiku, helping customers make the most of their Data Science platform and guiding them through building teams and processes to be successful. He has worked at multiple Data Science platform startups and has successfully built out analytics functions at two multinational insurance companies. This includes building out data and analytics platforms, Business Intelligence capabilities, and Data Science teams serving both internal and external customers.
Before moving to insurance, Conor was a Weather Forecaster in the US Air Force supporting operations in Southwest Asia.  After leaving the military, Conor spent a number of years in store management at Starbucks Coffee while serving as an Emergency Management Technician in the Illinois Air National Guard.
Conor earned his Bachelor of Science degree in Mathematics from the University of Illinois at Chicago.

Adam Jenkins, Ph.D.
Data Science Lead, Biogen

Integrating Data Science into Commercial Pharma: The Good, The Bad, and The Validated

One of the most difficult industries for data science to take hold and gain effectiveness is the world of commercial pharma/biotech. Due to the regulation of FDA, lack of identifiable patient data, and one of the last industries that use a “traveling salesperson” approach, data science is still taking hold in this industry. This talk will talk in depth about steps that companies in this space can take to make the most out of their data science teams and out of their data in general. These steps will include standardizing internal data, utilizing 3rd party data in unique methodologies, bearing the course during marketing and sales initiatives, and creating validation methods.
We will dive into these issues through the context of how to bring the industry from one of “old school” sales and marketing techniques into one where machine learning can make a tangible top and bottom line impacts. Through this lens, we will identify areas of opportunity that should first be tackled by any organization and those areas which are often pitfalls (even though they may seem lucrative). Additionally, an ideal team make-up and timeline will be outlined so that these companies can level-set where they are and where they can improve their data science processes.

Presenter bio

Adam Jenkins is a Data Science Lead at Biogen, where he works on optimizing commercial outcomes through marketing, patient outreach, and field force infrastructure utilizing data science and predictive analytics. Biogen is a leader in the treatment and research of neurological diseases for 40 years. Prior to being commercial lead, Adam was part of their Digital Health team where he worked on the next-generation application of wearable and neurological tests. Holding a Ph.D. in genomics, he also teaches management skills for data science and big data initiatives at Boston College.

Jennifer Kloke, Ph.D.
VP of Product innovation, Ayasdi

AI and Value-Based Care: Reducing Costs and Enhancing Patient Outcomes

Politics aside, value-based care is the model that is transforming the practice and compensation of healthcare in the United States. Once laggards, payers, and providers are increasingly becoming sophisticated enterprises when it comes to data and the implications for healthcare are staggering. What lies within that data has the power to cure disease, reduce readmissions, enable precision medicine, improve population health, detect fraud and reduce waste.
Take Flagler Hospital, a 335-bed hospital in St. Augustine, Florida. They don’t have a single data scientist on staff. Nonetheless, they have orchestrated one of the most successful deployments of artificial intelligence in healthcare — delivering cost savings of more than 30%, reducing the length of stay by days and reducing readmissions by a factor of more than 7X.
In this talk, Dr. Jennifer Kloke, VP of Product Innovation at Ayasdi, will walk through how healthcare institutions small and large will be able to apply artificial intelligence in the pursuit of value-based care. She can discuss the strategy, implementation, and results seen to date and go over how these advances are transforming the healthcare industry.

Presenter bio

Dr. Jennifer Kloke is the VP of Product Innovation at Ayasdi. For the last three years, she has been responsible for the automation and algorithm development for the entire Ayasdi codebase and led many efforts to development cutting edge analysis techniques utilizing TDA and AI. During that time, she was the principal investigator for a Phase 2 DARPA SBIR developing automation and data fusion capabilities. These have led to breakthroughs in the field and several patents. Jennifer also served five years as a Senior Data Scientist analyzing a wide variety of data including point cloud, text, and networks from diverse industries including large military contractors, finance, bio-tech, and electronics manufacturing. Her work includes developing prediction algorithms for reducing the number of false alarms for a large military jet manufacturer as well as developing and deploying a predictive program management application at a large government contractor.
Jennifer received her Ph.D. in Mathematics from Stanford University with an emphasis on topological data analysis. She has collaborated with chemists at Lawrence Berkeley National Laboratory and UC Berkeley to develop topological methods to mine large databases of chemical compounds to identify energy-efficient compounds for carbon capture. She also developed a de-noising algorithm to efficiently process high dimensional data and has published in the Journal of Differential Geometry.

Free access to ODSC talks and content is available at our

AI Learning Accelerator

ODSC EAST | Boston

– April 30th – May 3rd, 2019 –

The World’s Largest Applied Data Science Conference


– Nov 19th – 22nd, 2019 –

Europe’s Fastest Growing Data Science Community

ODSC WEST | San Francisco

– Oct 29th – Nov 1st, 2019 –

The World’s Largest Applied Data Science Conference

Accelerate AI

Business Conference

The Accelerate AI conference series is where executives and business professionals meet the best and brightest innovators in AI and Data Science. The conference brings together top industry executives and CxOs that will help you understand how AI and data science can transform your business.

Accelerate AI East | Boston

– April 30th – May 1st, 2019 –

The ODSC summit on accelerating your business growth with AI

Accelerate AI Europe | London 

– Nov 19th – 20th, 2019 –

The ODSC summit on accelerating your business growth with AI

Accelerate AI West | San Francisco 

– Oct 29th – 30th, 2019 –

The ODSC summit on accelerating your business growth with AI